Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia.

Nature Genetics November 2016

Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.

De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies.

American Journal of Human Genetics 4 August 2016

 

Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child trios revealed more than 290 candidate genes in which only a single individual had a de novo variant. We sought to identify additional pathogenic variants in a subset (n = 27) of these genes via targeted sequencing in an unsolved cohort of 531 individuals with a diverse range of EEs. We report 17 individuals with pathogenic variants in seven of the 27 genes, defining a genetic etiology in 3.2% of this unsolved cohort. Our results provide definitive evidence that de novo mutations in SLC1A2 and CACNA1A cause specific EEs and expand the compendium of clinically relevant genotypes for GABRB3. We also identified EEs caused by genetic variants in ALG13, DNM1, and GNAO1 and report a mutation in IQSEC2. Notably, recurrent mutations accounted for 7/17 of the pathogenic variants identified. As a result of high-depth coverage, parental mosaicism was identified in two out of 14 cases tested with mutant allelic fractions of 5%-6% in the unaffected parents, carrying significant reproductive counseling implications. These results confirm that dysregulation in diverse cellular neuronal pathways causes EEs, and they will inform the diagnosis and management of individuals with these devastating disorders.

The Intolerance to Functional Genetic Variation of Protein Domains Predicts the Localization of Pathogenic Mutations within Genes

Genome Biology 18 January 2016

Ranking human genes based on their tolerance to functional genetic variation can greatly facilitate patient genome interpretation. It is well established, however, that different parts of proteins can have different functions, suggesting that it will ultimately be more informative to focus attention on functionally distinct portions of genes. Here we evaluate the intolerance of genic sub-regions using two biological sub-region classifications. We show that the intolerance scores of these sub-regions significantly correlate with reported pathogenic mutations. This observation extends the utility of intolerance scores to indicating where pathogenic mutations are mostly likely to fall within genes.

A Roadmap for Precision Medicine in the Epilepsies

The Lancet Neurology December 2015

Technological advances have paved the way for accelerated genomic discovery and are bringing precision medicine clearly into view. Epilepsy research in particular is well suited to serve as a model for the development and deployment of targeted therapeutics in precision medicine because of the rapidly expanding genetic knowledge base in epilepsy, the availability of good in-vitro and in-vivo model systems to efficiently study the biological consequences of genetic mutations, the ability to turn these models into effective drug-screening platforms, and the establishment of collaborative research groups. Moving forward, it is crucial that these collaborations are strengthened, particularly through integrated research platforms, to provide robust analyses both for accurate personal genome analysis and gene and drug discovery. Similarly, the implementation of clinical trial networks will allow the expansion of patient sample populations with genetically defined epilepsy so that drug discovery can be translated into clinical practice.

Decade in Review-Epilepsy: Edging Toward Breakthroughs in Epilepsy Diagnostics and Care

Nature Reviews Neurology 13 October 2015

The past decade has yielded a host of important conceptual advances in epilepsy, along with some promising findings related to diagnostics and therapeutics. We are on an upswing where precise identification of the cause of a patient’s seizure disorder can be matched to therapy that has a high likelihood of success.

The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity

PLOS Genetics 2 September 2015

Noncoding sequence contains pathogenic mutations. Yet, compared with mutations in protein-coding sequence, pathogenic regulatory mutations are notoriously difficult to recognize. Most fundamentally, we are not yet adept at recognizing the sequence stretches in the human genome that are most important in regulating the expression of genes. For this reason, it is difficult to apply to the regulatory regions the same kinds of analytical paradigms that are being successfully applied to identify mutations among protein-coding regions that influence risk. To determine whether dosage sensitive genes have distinct patterns among their noncoding sequence, we present two primary approaches that focus solely on a gene’s proximal noncoding regulatory sequence. The first approach is a regulatory sequence analogue of the recently introduced residual variation intolerance score (RVIS), termed noncoding RVIS, or ncRVIS. The ncRVIS compares observed and predicted levels of standing variation in the regulatory sequence of human genes. The second approach, termed ncGERP, reflects the phylogenetic conservation of a gene’s regulatory sequence using GERP++. We assess how well these two approaches correlate with four gene lists that use different ways to identify genes known or likely to cause disease through changes in expression: 1) genes that are known to cause disease through haploinsufficiency, 2) genes curated as dosage sensitive in ClinGen’s Genome Dosage Map, 3) genes judged likely to be under purifying selection for mutations that change expression levels because they are statistically depleted of loss-of-function variants in the general population, and 4) genes judged unlikely to cause disease based on the presence of copy number variants in the general population. We find that both noncoding scores are highly predictive of dosage sensitivity using any of these criteria. In a similar way to ncGERP, we assess two ensemble-based predictors of regional noncoding importance, ncCADD and ncGWAVA, and find both scores are significantly predictive of human dosage sensitive genes and appear to carry information beyond conservation, as assessed by ncGERP. These results highlight that the intolerance of noncoding sequence stretches in the human genome can provide a critical complementary tool to other genome annotation approaches to help identify the parts of the human genome increasingly likely to harbor mutations that influence risk of disease.

Copy Number Variant Analysis from Exome Data in 349 Patients with Epileptic Encephalopathy

Annals of Neurology August 2015

Infantile spasms (IS) and Lennox–Gastaut syndrome (LGS) are epileptic encephalopathies characterized by early onset, intractable seizures, and poor developmental outcomes. De novo sequence mutations and copy number variants (CNVs) are causative in a subset of cases. We used exome sequence data in 349 trios with IS or LGS to identify putative de novo CNVs. We confirm 18 de novo CNVs in 17 patients (4.8%), 10 of which are likely pathogenic, giving a firm genetic diagnosis for 2.9% of patients. Confirmation of exome‐predicted CNVs by array‐based methods is still required due to false‐positive rates of prediction algorithms. Our exome‐based results are consistent with recent array‐based studies in similar cohorts and highlight novel candidate genes for IS and LGS.

Incorporating Functional Information in Tests of Excess De Novo Mutational Load

American Journal of Human Genetics 6 August 2015

A number of recent studies have investigated the role of de novo mutations in various neurodevelopmental and neuropsychiatric disorders. These studies attempt to implicate causal genes by looking for an excess load of de novo mutations within those genes. Current statistical methods for assessing this excess are based on the implicit assumption that all qualifying mutations in a gene contribute equally to disease. However, it is well established that different mutations can have radically different effects on the ultimate protein product and, as a result, on disease risk. Here, we propose a method, fitDNM, that incorporates functional information in a test of excess de novo mutational load. Specifically, we derive score statistics from a retrospective likelihood that incorporates the probability of a mutation being damaging to gene function. We show that, under the null, the resulting test statistic is distributed as a weighted sum of Poisson random variables and we implement a saddlepoint approximation of this distribution to obtain accurate p values. Using simulation, we have shown that our method outperforms current methods in terms of statistical power while maintaining validity. We have applied this approach to four de novo mutation datasets of neurodevelopmental and neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, schizophrenia, and severe intellectual disability. Our approach also implicates genes that have been implicated by existing methods. Furthermore, our approach provides strong statistical evidence supporting two potentially causal genes: SUV420H1 in autism spectrum disorder and TRIO in a combined analysis of the four neurodevelopmental and neuropsychiatric disorders investigated here.

The Nature of Neonatal Status Epilepticus: A Clinician’s Perspective

Epilepsy Behavior August 2015

Neonatal status epilepticus occurs within the substrate of the hyperexcitable newborn brain and is usually provoked by acute CNS derangements, although status can also be the presentation of early-life epilepsy. Provoked neonatal status usually resolves within a few days, with or without treatment, but new data suggests that status is associated with adverse outcomes, even after controlling for underlying disease severity and MRI structural brain injury. Novel treatments may be needed to improve seizure control and outcome, given the characteristics of neurotransmission in the newborn brain. This article is part of a Special Issue entitled “Status Epilepticus”.

Epileptic Encephalopathy-causing Mutations in DNM1 Impair Synaptic Vesicle Endocytosis

Neurology Genetics 17 April 2015

We demonstrate that the expression of each mutant protein decreased endocytosis activity in a dominant-negative manner. One of the G-domain mutations, K206N, decreased protein levels. The G359A mutation, which occurs in the middle domain, disrupted higher-order DNM1 oligomerization. EM of mutant DNM1-transfected HeLa cells and of the Dnm1 (Ftfl) mouse brain revealed vesicle defects, indicating that the mutations likely interfere with DNM1‘s vesicle scission activity.

TDP2 Protects Transcription from Abortive Topoisomerase Activity and is Required for Normal Neural Function

Nature Genetics May 2014

Topoisomerase II (TOP2) removes torsional stress from DNA and facilitates gene transcription by introducing transient DNA double-strand breaks (DSBs). Such DSBs are normally rejoined by TOP2 but on occasion can become abortive and remain unsealed. Here we identify homozygous mutations in the TDP2 gene encoding tyrosyl DNA phosphodiesterase-2, an enzyme that repairs ‘abortive’ TOP2-induced DSBs, in individuals with intellectual disability, seizures and ataxia. We show that cells from affected individuals are hypersensitive to TOP2-induced DSBs and that loss of TDP2 inhibits TOP2-dependent gene transcription in cultured human cells and in mouse post-mitotic neurons following abortive TOP2 activity. Notably, TDP2 is also required for normal levels of many gene transcripts in developing mouse brain, including numerous gene transcripts associated with neurological function and/or disease, and for normal interneuron density in mouse cerebellum. Collectively, these data implicate chromosome breakage by TOP2 as an endogenous threat to gene transcription and to normal neuronal development and maintenance.

De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

American Journal of Human Genetics, 24 Sep 2014

Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10−4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction.

Denovo mutations in epileptic encephalopathies

Nature, 11 August 2013

Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox–Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ~4,000 genes that are the most intolerant to functional genetic variation in the human population. Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy.

Epi4K: Gene Discovery in 4000 Genomes

Epilepsia 29 May 2012

A major challenge in epilepsy research is to unravel the complex genetic mechanisms underlying both common and rare forms of epilepsy, as well as the genetic determinants of response to treatment. To accelerate progress in this area, the National Institute of Neurological Disorders and Stroke (NINDS) recently offered funding for the creation of a “Center without Walls” to focus on the genetics of human epilepsy. This article describes Epi4K, the collaborative study supported through this grant mechanism and having the aim of analyzing the genomes of a minimum 4,000 subjects with highly selected and well-characterized epilepsy.

 

News and Press Releases

2013 Interview: Sam Berkovic and David Goldstein explain the recent Epi4K study of childhood epilepsies

December 2012 Article: On Beyond the Ion Channel--an article about the presentation of Epi4K findings at the 2012 American Epilepsy Society Meeting

July 2012 Article: Child's illness fuels lab team's search for early life epilepsy diagnostics

March 2012 Press Release: UCSF Shares $25-Million Grant To Find Epilepsy Genes

Oct 2011 Press Release: Duke to Lead $25M Epilepsy Research Project